Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 11013-11028, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691641

RESUMO

Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.


Assuntos
Leite Humano , Oligossacarídeos , alfa-L-Fucosidase , Leite Humano/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , Glicosilação , Hidrólise , Fucose/metabolismo , Fucose/química , Concentração de Íons de Hidrogênio , Biocatálise
2.
Enzyme Microb Technol ; 178: 110441, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38574421

RESUMO

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.

3.
Glycobiology ; 33(5): 396-410, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014745

RESUMO

Glycoside hydrolase family 29 (GH29) encompasses α-L-fucosidases, i.e. enzymes that catalyze the hydrolytic release of fucose from fucosylated glycans, including N- and O-linked glycans on proteins, and these α-L-fucosidases clearly play important roles in biology. GH29 enzymes work via a retaining exo-action mechanism, and some can catalyze transfucosylation. There is no formal subfamily division of GH29 α-L-fucosidases, but they are nonetheless divided into two subfamilies: GH29A having a range of substrate specificities and GH29B having narrower substrate specificity. However, the sequence traits that determine the substrate specificity and transglycosylation ability of GH29 enzymes are not well characterized. Here, we present a new functional map of family GH29 members based on peptide-motif clustering via CUPP (conserved unique peptide patterns) and compare the substrate specificity and transglycosylation activity of 21 representative α-L-fucosidases across the 53 CUPP groups identified. The 21 enzymes exhibited different enzymatic rates on 8 test substrates, CNP-Fuc, 2'FL, 3FL, Lewisa, Lewisx, Fuc-α1,6-GlcNAc, Fuc-α1,3-GlcNAc, and Fuc-α1,4-GlcNAc. Certain CUPP groups clearly harbored a particular type of enzymes, e.g. the majority of the enzymes having activity on Lewisa or Lewisx categorized in the same CUPP clusters. In general, CUPP was useful for resolving GH29 into functional diversity subgroups when considering hydrolytic activity. In contrast, the transglycosylation capacity of GH29 α-L-fucosidases was distributed across a range of CUPP groups. Transglycosylation thus appears to be a common trait among these enzymes and not readily predicted from sequence comparison.


Assuntos
Polissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/metabolismo , Especificidade por Substrato , Fucose/química
4.
Curr Opin Biotechnol ; 78: 102842, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371893

RESUMO

Bio-based surfactants produced from renewable resources are increasing in market demand. In this review, we focus on enzymatic functionalization and coupling of carbohydrate-based heads to fatty aliphatic chains as tails for the synthesis of bio-based surfactants. We point to concrete examples of how transferase, lipase, and glycoside hydrolase-catalyzed esterification or glycoside formation can link a variety of mono- and oligosaccharides with fatty acids. Similarly, enzymatic reductive amination also leads to coupling. Another approach for surfactant synthesis is enzymatic carbohydrate functionalization before click chemistry coupling, and here LPMOs, oxidases, and dehydrogenases are relevant. C6 or C1-oxidizing activities are particularly important for converting nonionic surfactants into highly demanded anionic counterparts.


Assuntos
Lipase , Tensoativos , Oligossacarídeos , Carboidratos , Ácidos Graxos
5.
Chemistry ; 27(40): 10323-10334, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33914359

RESUMO

Glycobiology is dogged by the relative scarcity of synthetic, defined oligosaccharides. Enzyme-catalysed glycosylation using glycoside hydrolases is feasible but is hampered by the innate hydrolytic activity of these enzymes. Protein engineering is useful to remedy this, but it usually requires prior structural knowledge of the target enzyme, and/or relies on extensive, time-consuming screening and analysis. Here, a straightforward strategy that involves rational rapid in silico analysis of protein sequences is described. The method pinpoints 6-12 single-mutant candidates to improve transglycosylation yields. Requiring very little prior knowledge of the target enzyme other than its sequence, the method is generic and procures catalysts for the formation of glycosidic bonds involving various d/l-, α/ß-pyranosides or furanosides, and exo or endo action. Moreover, mutations validated in one enzyme can be transposed to others, even distantly related enzymes.


Assuntos
Glicosídeo Hidrolases , Glicosiltransferases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Glicosiltransferases/genética , Hidrólise , Oligossacarídeos , Especificidade por Substrato
6.
J Fungi (Basel) ; 6(4)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217923

RESUMO

Fusarium graminearum produces an α-l-fucosidase, FgFCO1, which so far appears to be the only known fungal GH29 α-l-fucosidase that catalyzes the release of fucose from fucosylated xyloglucan. In our quest to synthesize bioactive glycans by enzymatic catalysis, we observed that FgFCO1 is able to catalyze a transglycosylation reaction involving transfer of fucose from citrus peel xyloglucan to lactose to produce 2'-fucosyllactose, an important human milk oligosaccharide. In addition to achieving maximal yields, control of the regioselectivity is an important issue in exploiting such a transglycosylation ability successfully for glycan synthesis. In the present study, we aimed to improve the transglycosylation efficiency of FgFCO1 through protein engineering by transferring successful mutations from other GH29 α-l-fucosidases. We investigated several such mutation transfers by structural alignment, and report that transfer of the mutation F34I from BiAfcB originating from Bifidobacterium longum subsp. infantis to Y32I in FgFCO1 and mutation of D286, near the catalytic acid/base residue in FgFCO1, especially a D286M mutation, have a positive effect on FgFCO1 transfucosylation regioselectivity. We also found that enzymatic depolymerization of the xyloglucan substrate increases substrate accessibility and in turn transglycosylation (i.e., transfucosylation) efficiency. The data include analysis of the active site amino acids and the active site topology of FgFCO1 and show that transfer of point mutations across GH29 subfamilies is a rational strategy for targeted protein engineering of a xyloglucan-active fungal α-l-fucosidase.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32850731

RESUMO

Fungal genomes often contain several copies of genes that encode carbohydrate active enzymes having similar activity. The copies usually have slight sequence variability, and it has been suggested that the multigenecity represents distinct reaction optima versions of the enzyme. Whether the copies represent differences in substrate attack proficiencies of the enzyme have rarely been considered. The genomes of Aspergillus species encode several pectin lyases (EC 4.2.2.10), which all belong to polysaccharide lyase subfamily PL1_4 in the CAZy database. The enzymes differ in terms of sequence identity and phylogeny, and exhibit structural differences near the active site in their homology models. These enzymes catalyze pectin degradation via eliminative cleavage of the α-(1,4) glycosidic linkages in homogalacturonan with a preference for linkages between methyl-esterified galacturonate residues. This study examines four different pectin lyases (PelB, PelC, PelD, and PelF) encoded by the same Aspergillus sp. (namely A. luchuensis), and further compares two PelA pectin lyases from two related Aspergillus spp. (A. aculeatus and A. tubingensis). We report the phylogeny, enzyme kinetics, and enzymatic degradation profiles of the enzymes' action on apple pectin, citrus pectin, and sugar beet pectin. All the pectin lyases exerted highest reaction rate on apple pectin [degree of methoxylation (DM) 69%, degree of acetylation (DAc) 2%] and lowest reaction rate on sugar beet pectin (DM 56%, DAc 19%). Activity comparison at pH 5-5.5 produced the following ranking: PelB > PelA > PelD > PelF > PelC. The evolution of homogalacturonan-oligomer product profiles during reaction was analyzed by liquid chromatography with mass spectrometry (LC-MS) detection. This analyses revealed subtle differences in the product profiles indicating distinct substrate degradation preferences amongst the enzymes, notably with regard to acetyl substitutions. The LC-MS product profiling analysis thus disclosed that the multigenecity appears to provide the fungus with additional substrate degradation versatility. This product profiling furthermore represents a novel approach to functionally compare pectin-degrading enzymes, which can help explain structure-function relations and reaction properties of disparate copies of carbohydrate active enzymes. A better understanding of the product profiles generated by pectin modifying enzymes has significant implications for targeted pectin modification in food and biorefinery processes.

8.
Carbohydr Res ; 493: 108029, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32445980

RESUMO

Human milk oligosaccharides (HMOs) are a family of structurally distinct carbohydrate oligomers present in human milk. HMOs protect breastfed babies against infection and promote the development of infant health and cognition. In the gut, fucosylated HMOs in particular function as decoy receptors that intercept epithelial attachment of enteric pathogens and hence help reduce infection. Infant formulae made from bovine milk are essentially devoid of HMOs, which creates a large impetus for biosynthetic production of HMOs. Certain microbial α-L-fucosidases (EC 3.2.1.51, EC 3.2.1.111), specifically various retaining α-L-fucosidases of glycoside hydrolase family 29 (GH29), are capable of catalysing transfucosylation. The use of GH29 α-L-fucosidases to promote transfucosylation reactions thus represents a strategy for biocatalytic synthesis of fucosylated HMOs. The purpose of this review is to present the current knowledge on the use of such α-L-fucosidases for synthesis of fucosylated HMOs by enzymatic transfucosylation. We summarize the available data obtained for both wild type and engineered microbial α-L-fucosidases, discuss enzyme and substrate sources, and review factors governing transglycosylation performance, particularly the use of protein engineering. We describe the mechanistic reaction details of α-l-fucosidase transfucosylation, and examine details of enzyme mutation strategies promoting transfucosylation. Finally, we list recommendations for future reaction targets based on currently abundant substrate sources.


Assuntos
Fucose/metabolismo , Leite Humano/química , Oligossacarídeos/biossíntese , alfa-L-Fucosidase/metabolismo , Configuração de Carboidratos , Humanos , Leite Humano/metabolismo , Modelos Moleculares , Oligossacarídeos/química
9.
Molecules ; 24(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141914

RESUMO

Human milk oligosaccharides (HMOs) signify a unique group of oligosaccharides in breast milk, which is of major importance for infant health and development. The functional benefits of HMOs create an enormous impetus for biosynthetic production of HMOs for use as additives in infant formula and other products. HMO molecules can be synthesized chemically, via fermentation, and by enzymatic synthesis. This treatise discusses these different techniques, with particular focus on harnessing enzymes for controlled enzymatic synthesis of HMO molecules. In order to foster precise and high-yield enzymatic synthesis, several novel protein engineering approaches have been reported, mainly concerning changing glycoside hydrolases to catalyze relevant transglycosylations. The protein engineering strategies for these enzymes range from rationally modifying specific catalytic residues, over targeted subsite -1 mutations, to unique and novel transplantations of designed peptide sequences near the active site, so-called loop engineering. These strategies have proven useful to foster enhanced transglycosylation to promote different types of HMO synthesis reactions. The rationale of subsite -1 modification, acceptor binding site matching, and loop engineering, including changes that may alter the spatial arrangement of water in the enzyme active site region, may prove useful for novel enzyme-catalyzed carbohydrate design in general.


Assuntos
Glicosídeo Hidrolases/metabolismo , Leite Humano/química , Oligossacarídeos/síntese química , Engenharia de Proteínas/métodos , Indústria de Laticínios , Glicosilação , Humanos
10.
Chembiochem ; 19(17): 1858-1865, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29911342

RESUMO

Certain enzymes of the glycoside hydrolase family 20 (GH20) exert transglycosylation activity and catalyze the transfer of ß-N-acetylglucosamine (GlcNAc) from a chitobiose donor to lactose to produce lacto-N-triose II (LNT2), a key human milk oligosaccharide backbone moiety. The present work is aimed at increasing the transglycosylation activity of two selected hexosaminidases, HEX1 and HEX2, to synthesize LNT2 from lactose and chitobiose. Peptide pattern recognition analysis was used to categorize all GH20 proteins in subgroups. On this basis, we identified a series of proteins related to HEX1 and HEX2. By sequence alignment, four additional loop sequences were identified that were not present in HEX1 and HEX2. Insertion of these loop sequences into the wild-type sequences induced increased transglycosylation activity for three out of eight mutants. The best mutant, HEX1GTEPG , had a transglycosylation yield of LNT2 on the donor that was nine times higher than that of the wild-type enzyme. Homology modeling of the enzymes revealed that the loop insertion produced a more shielded substrate-binding pocket. This shielding is suggested to explain the reduced hydrolytic activity, which in turn resulted in the increased transglycosylation activity of HEX1GTEPG .


Assuntos
Proteínas de Bactérias/química , Glicosiltransferases/química , Trissacarídeos/síntese química , beta-N-Acetil-Hexosaminidases/química , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Dissacarídeos/química , Escherichia coli/genética , Glicosilação , Glicosiltransferases/genética , Hidrólise , Lactose/química , Conformação Proteica , Engenharia de Proteínas/métodos , Alinhamento de Sequência , beta-N-Acetil-Hexosaminidases/genética
11.
Enzyme Microb Technol ; 115: 37-44, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29859601

RESUMO

The α-1,3/4-l-fucosidases (EC 3.2.1.111; GH29) BbAfcB from Bifidobacterium bifidum and CpAfc2 from Clostridium perfringens can catalyse formation of the human milk oligosaccharide (HMO) lacto-N-fucopentaose II (LNFP II) through regioselective transfucosylation of lacto-N-tetraose (LNT) with 3-fucosyllactose (3FL) as donor substrate. The current work exploits structural differences between the two enzymes with the aim of engineering BbAfcB into a more efficient transfucosidase and approaches an understanding of structure-function relations of hydrolytic activity vs. transfucosylation activity in GH29. Replacement of a 23 amino acids long α-helical loop close to the active site of BbAfcB with the corresponding 17-aminoacid α-helical loop of CpAfc2 resulted in almost complete abolishment of the hydrolytic activity on 3FL (6000 times lower hydrolytic activity than WT BbAfcB), while the transfucosylation activity was lowered only one order of magnitude. In turn, the loop engineering resulted in an α-1,3/4-l-fucosidase with transfucosylation activity reaching molar yields of LNFP II of 39 ±â€¯2% on 3FL and negligible product hydrolysis. This was almost 3 times higher than the yield obtained with WT BbAfcB (14 ±â€¯0.3%) and comparable to that obtained with CpAfc2 (50 ±â€¯8%). The obtained transfucosylation activity may expand the options for HMO production: mixtures of 3FL and LNT could be enriched with LNFP II, while mixtures of 3FL and lacto-N-neotetraose (LNnT) could be enriched with LNFP III.


Assuntos
Bifidobacterium/enzimologia , Fucose/metabolismo , Leite Humano/química , Oligossacarídeos/biossíntese , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Domínio Catalítico , Fucose/química , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , alfa-L-Fucosidase/classificação
12.
N Biotechnol ; 41: 34-45, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29221760

RESUMO

Human milk oligosaccharides (HMOs) constitute a unique family of bioactive lactose-based molecules present in human breast milk. HMOs are of major importance for infant health and development but also virtually absent from bovine milk used for infant formula. Among the HMOs, the fucosylated species are the most abundant. Transfucosylation catalysed by retaining α-l-fucosidases is a new route for manufacturing biomimetic HMOs. Seven α-l-fucosidases from glycosyl hydrolase family 29 were expressed, characterized in terms of substrate specificity and thermal stability, and shown to be able to catalyse transfucosylation. The α-l-1,3/4-fucosidase CpAfc2 from Clostridium perfringens efficiently catalysed the formation of the more complex human milk oligosaccharide structure lacto-N-fucopentaose II (LNFP II) using 3-fucosyllactose as fucosyl donor and lacto-N-tetraose as acceptor with a 39% yield. α-l-Fucosidases FgFCO1 from Fusarium graminearum and Mfuc5 from a soil metagenome were able to catalyse transfucosylation of lactose using citrus xyloglucan as fucosyl donor. FgFCO1 catalysed formation of 2'-fucosyllactose, whereas Mfuc5 catalysis mainly produced an unidentified, non-HMO fucosyllactose, reaching molar yields based on the donor substrate of 14% and 18%, respectively.


Assuntos
Fucose/metabolismo , Leite Humano/química , Oligossacarídeos/biossíntese , alfa-L-Fucosidase/metabolismo , Animais , Estabilidade Enzimática , Fucose/química , Glucanos/metabolismo , Glicosilação , Humanos , Hidrólise , Lactose/metabolismo , Modelos Moleculares , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
13.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029078

RESUMO

Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity to utilise pectins for growth is widespread among colonic Bacteroidetes but relatively uncommon among Firmicutes. One Firmicutes species promoted by pectin is Eubacterium eligens. Eubacterium eligens DSM3376 utilises apple pectin and encodes a broad repertoire of pectinolytic enzymes, including a highly abundant pectate lyase of around 200 kDa that is expressed constitutively. We confirmed that certain Faecalibacterium prausnitzii strains possess some ability to utilise apple pectin and report here that F. prausnitzii strains in common with E. eligens can utilise the galacturonide oligosaccharides DP4 and DP5 derived from sugar beet pectin. Faecalibacterium prausnitzii strains have been shown previously to exert anti-inflammatory effects on host cells, but we show here for the first time that E. eligens strongly promotes the production of the anti-inflammatory cytokine IL-10 in in vitro cell-based assays. These findings suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile.


Assuntos
Anti-Inflamatórios/imunologia , Colo/microbiologia , Microbioma Gastrointestinal , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Prebióticos/análise , Simbiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Colo/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Malus/química , Malus/metabolismo , Oligossacarídeos/análise , Pectinas/análise
14.
PLoS One ; 11(7): e0158434, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27367145

RESUMO

Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3'-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases.


Assuntos
Biologia Computacional , Neuraminidase/metabolismo , Domínio Catalítico , Glicosilação , Haemophilus/enzimologia , Modelos Moleculares , Neuraminidase/química , Homologia de Sequência de Aminoácidos
15.
N Biotechnol ; 33(3): 355-60, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26802542

RESUMO

Human milk oligosaccharides (HMOs) designate a unique family of bioactive lactose-based molecules present in human breast milk. Using lactose as a cheap donor, some ß-galactosidases (EC 3.2.1.23) can catalyze transgalactosylation to form the human milk oligosaccharide lacto-N-neotetraose (LNnT; Gal-ß(1,4)-GlcNAc-ß(1,3)-Gal-ß(1,4)-Glc). In order to reduce reaction times and be able to work at temperatures, which are less welcoming to microbial growth, the current study investigates the possibility of using thermostable ß-galactosidases for synthesis of LNnT and N-acetyllactosamine (LacNAc; Gal-ß(1,4)-GlcNAc), the latter being a core structure in HMOs. Two hyperthermostable GH 1 ß-galactosidases, Ttß-gly from Thermus thermophilus HB27 and CelB from Pyrococcus furiosus, were codon-optimized for expression in Escherichia coli along with BgaD-D, a truncated version of the GH 42 ß-galactosidase from Bacillus circulans showing high transgalactosylation activity at low substrate concentrations. The three ß-galactosidases were compared in the current study in terms of their transgalactosylation activity in the formation of LacNAc and LNnT. In all cases, BgaD-D was the most potent transgalactosidase, but both thermostable GH 1 ß-galactosidases could catalyze formation of LNnT and LacNAc, with Ttß-gly giving higher yields than CelB. The thermal stability of the three ß-galactosidases was elucidated and the results were used to optimize the reaction efficiency in the formation of LacNAc, resulting in 5-6 times higher reaction yields and significantly shorter reaction times.


Assuntos
Leite Humano/enzimologia , Oligossacarídeos/biossíntese , Temperatura , beta-Galactosidase/metabolismo , Acetilglucosamina/metabolismo , Estabilidade Enzimática , Glicosilação , Humanos , Trissacarídeos/metabolismo
16.
Enzyme Microb Technol ; 82: 42-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672447

RESUMO

Sialylated galactooligosaccharides (GOS) represent a potential infant formula ingredient, which is believed to contribute with a combination of the beneficial properties of the prebiotic GOS as well as of sialylated human milk oligosaccharides. Sialylated GOS do not exist in natural milk, but can be produced from κ(kappa)-casein glycomacropeptide (CGMP), a sialylated side stream component from cheese-making, by sialidase-catalyzed transsialylation. Using a rationally designed mutant of the sialidase from Trypanosoma rangeli, Tr13, with enhanced transsialylation activity, six different GOS preparations with a varying degree of polymerization (DP) were effectively sialylated with molar yields of 20-30% on the CGMP sialyl in batch reactions. The rate of sialylation of the individual DPs was largely dependent on the DP distribution in each GOS preparation, and Tr13 catalysis did not discriminate against large GOS molecules, providing the novelty point that GOS molecules are sialylated independently of their size by Tr13. Using CGMP, GOS, and Tr13, the production of gram-scale quantities of sialyl-GOS was achieved in 20L volume reactions. Compared to the benchmark transsialidase from pathogenic Trypanosoma cruzi, the Tr13 was significantly more thermostable. By employing an enzymatic membrane reactor, Tr13 could be recycled and after seven consecutive 1-h reaction cycles, the biocatalytic productivity of the enzyme was increased 7-fold compared to the batch reaction. Assuming that the enzyme may be specific for α-2,3-bound sialyl moieties only, and that only 50% of sialyl linkages in CGMP are α-2,3-linked, the molar yield of sialyl-GOS on the available α-2,3-bound sialyl moieties in CGMP reached 80% in the enzymatic membrane reactor system.


Assuntos
Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma rangeli/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Biopolímeros , Reatores Biológicos , Configuração de Carboidratos , Caseínas/metabolismo , Galactose/metabolismo , Glicopeptídeos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Pichia , Estabilidade Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura , Trypanosoma rangeli/genética
17.
Appl Microbiol Biotechnol ; 99(19): 7997-8009, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25843303

RESUMO

This paper describes the discovery and characterization of two novel ß-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as ß-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The ß-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both ß-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-ß-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-ß-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors ß-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Glicosilação , Humanos , Metagenômica , Leite Humano/química , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Microbiologia do Solo , Especificidade por Substrato , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética
18.
J Agric Food Chem ; 62(40): 9615-31, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25208138

RESUMO

Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and ß-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.


Assuntos
Biomimética/métodos , Enzimas/metabolismo , Leite Humano/química , Oligossacarídeos/química , Enzimas/química , Enzimas Imobilizadas , Glicosídeo Hidrolases/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Neuraminidase/metabolismo , Engenharia de Proteínas , Temperatura , beta-Galactosidase/metabolismo
19.
Bioresour Technol ; 166: 9-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880807

RESUMO

An integrated membrane system was investigated for the production of 3'-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor (EMR) was used to separate the product and reuse the enzyme. A PLCC regenerated cellulose membrane was found to be the most suitable for both the UF purification and EMR. Subsequently, nanofiltration (NF) was conducted to increase the purity of the 3'-sialyllactose by removing the excess lactose present. The NTR7450 membrane outperformed others in NF due to its high retention of 3'-sialyllactose (98%) and relatively low rejection of lactose (40%). The lactose in the permeate could be concentrated by the NF45 membrane and recycled into the EMR. The described integrated membrane system enables a more economic and efficient enzymatic production of 3'-sialyllactose.


Assuntos
Caseínas/metabolismo , Glicopeptídeos/metabolismo , Lactose/metabolismo , Membranas Artificiais , Leite/química , Neuraminidase/metabolismo , Oligossacarídeos/biossíntese , Animais , Catálise , Celulose , Cromatografia por Troca Iônica , Estrutura Molecular , Neuraminidase/síntese química , Ultrafiltração
20.
Biotechnol Lett ; 36(6): 1315-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563319

RESUMO

Biocatalytic trans-sialylation is relevant for the design of biomimetic oligosaccharides such as human milk oligosaccharides. t-Butanol and ionic liquids, EAN (ethylammonium nitrate), [MMIm][MeSO4] (1,3-dimethylimidazolium methyl sulfate), and [C2OHMIm][PF6] (1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate), were examined as co-solvents for the improvement of the synthesis versus hydrolysis ratio in the trans-sialylation of lactose, catalysed by an engineered sialidase from Trypanosoma rangeli. The use of 25 % (v/v) t-butanol as co-solvent significantly increased 3'-sialyllactose production by 40 % from 1.04 ± 0.09 to 1.47 ± 0.01 mM. The synthesis versus hydrolysis ratio increased correspondingly by 1.2-times. 1-2.5 % (v/v) EAN or [C2OHMIm][PF6] improved the synthesis versus hydrolysis ratio up to 2.5-times but simultaneously decreased the 3'-sialyllactose yield, probably due to enzyme inactivation caused by the ionic liquid. [MMIm][MeSO4] had a detrimental effect on the trans-sialylation yield and on the ratio between synthesis and hydrolysis.


Assuntos
Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Trypanosoma rangeli/metabolismo , Hidrólise , Neuraminidase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solventes , Trypanosoma rangeli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA